Fuzzy Clustering Data Given on the Ordinal Scale Based on Membership and Likelihood Functions Sharing

نویسندگان

  • Zhengbing Hu
  • Yevgeniy V. Bodyanskiy
  • Oleksii K. Tyshchenko
  • Viktoriia O. Samitova
چکیده

A task of clustering data given on the ordinal scale under conditions of overlapping clusters has been considered. It’s proposed to use an approach based on membership and likelihood functions sharing. A number of performed experiments proved effectiveness of the proposed method. The proposed method is characterized by robustness to outliers due to a way of ordering values while constructing membership functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets

‎Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set‎. ‎If we have fuzzy observations‎, ‎using ordinal regression methods can't model them; In this case‎, ‎using fuzzy regression is a good method‎. ‎When observations are fuzzy and there are outliers in the data sets‎, ‎using robust fuzzy regression methods are appropriate alternatives‎....

متن کامل

A Fuzzy Approach to Speaker Verification

This paper proposes a fuzzy approach to speaker verification. For an input utterance and a claimed identity, most of the current methods compute a claimed speaker’s score, which is the ratio of the claimed speaker’s and the impostors’ likelihood functions, and compare this score with a given threshold to accept or reject this speaker. Considering the speaker verification problem based on fuzzy ...

متن کامل

A new method for fuzzification of nested dummy variables by fuzzy clustering membership functions and its application in financial economy

In this study, the aim is to propose a new method for fuzzification of nested dummy variables. The fuzzification idea of dummy variables has been acquired from non-linear part of regime switching models in econometrics. In these models, the concept of transfer functions is like the notion of fuzzy membership functions, but no principle or linguistic sentence have been used for inputs. Consequen...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

Refining membership degrees obtained from fuzzy C-means by re-fuzzification

Fuzzy C-mean (FCM) is the most well-known and widely-used fuzzy clustering algorithm. However, one of the weaknesses of the FCM is the way it assigns membership degrees to data which is based on the distance to the cluster centers. Unfortunately, the membership degrees are determined without considering the shape and density of the clusters. In this paper, we propose an algorithm which takes th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1702.01200  شماره 

صفحات  -

تاریخ انتشار 2017